
The Long Road from
Capistrano to Kubernetes
Tobias Schwab, Co-Founder of PhraseApp

Slides: http://bit.ly/cap-to-kube

How to deploy Ruby on Rails?

Deploying Ruby on Rails

● required on all servers:
○ OS + system packages
○ ruby runtime in specific version
○ gems in specific versions + system packages
○ nginx reverse proxy

● deployment:
○ copy source code to all servers
○ parallel restarts on all servers (zero downtime)

2007: Capistrano

Capistrano

Framework and utility for executing commands in parallel on
multiple remote machines, via SSH. The primary goal is to
simplify and automate the deployment of web applications.
● one directory per release
● current symlink
● hooks
● rollbacks

2007: Capistrano

● 3 bare metal servers, SMB hoster
● deployment with capistrano
● manual config and library management
● pros: simple, easy to understand
● cons: hardly any automation

2010: Bundler

2010: Bundler

● ~ 10 bare metal servers at telefonica/o2
● library (gem) management with bundler
● bundle install via capistrano hook on every deployment
● config management with versioned shell scripts
● pros: semi-automated config management
● cons: system state hard to manage with shell scripts

The problem with convenience

● creating, adding and updating gems is easy
● more gems => less code to write
● more gems => more gems to maintain
● more gems => more system packages necessary
● more system packages => more demand for good config

management

The problem with popularity

2012: Hetzner

2012-01: Hetzner

● first PhraseApp deployment
● single hetzner host
● manually installed ruby version and system packages
● pros: good enough, “let’s fix things if we need to”
● cons: “not important”

2012: Scaling Rails

2012-07: Scaling Rails

● hybrid cloud on Rackspace: bare metal + VMs
● config management with chef
● custom HAProxy
● pros: automated config management, suitable for fire

fighting
● cons: learning curve for chef, long bootstrapping times,

capistrano difficult with changing hosts

2013: Immutable Infrastructure

2013-01: Immutable Infrastructure

● replacing chef-server based deployment
● golden master AMIs on AWS
● linear shell script to create AMIs, no config management
● deploying by replacing full instances
● pros: stateless, immutable, scalable
● cons: slow deployments, custom deploy code

Docker

● OS + packages + libraries + code in one image
● API
● immutable infrastructure
● reduce deployment times
● moves dev closer to prod

2013: Docker

2013-09: Docker

● data protection requirements
● static VMs on “not so good” but german hoster
● deployment

○ docker image per deployment
○ create new containers via API
○ update HAProxy after
○ terminate old containers

● pros: immutable infrastructure on static VMs, fast
● cons: 100% custom deployment code

2014: AMIs, Cloudformation, ASGs

2014-01: AMIs, Cloudformation, ASGs

● deployment
○ create Golden Master AMI
○ update AutoScaling Group
○ scale up and scale down to replace instances

● pros: rock solid, not much custom code, transparent
● cons: slow deployments, chaotic rollbacks

2015: Wunderproxy

2015-03: Wunderproxy

● reverse proxy with API for container management
● config on S3 picked up in ASG Userdata
● deployment

○ create docker image
○ create new containers via API
○ update reverse proxy
○ config update and terminate old containers

● pros: faster deployments, simpler rollbacks
● cons: custom code, stuck with legacy docker version

2016: ECS vs. Kubernetes

PhraseApp goes Kubernetes

● 2016-03: begin of evaluation of ECS, then Kubernetes
● 2016-05: initial commit to kc
● 2016-06: internal growth app deployed with kc on

kubernetes
● 2017-02: PhraseApp deployed with kubernetes

PhraseApp: Architecture

● monolithic Ruby on Rails application
● MySQL, ElasticSearch, Redis
● asynchronous Jobs
● cronjobs

Architecture PhraseApp

Cloudfront

ELB

svc/nginx

dpl/nginx

SQS

svc/web

dpl/web

dpl/worker-uploads

dpl/worker-index

dpl/worker-default

dpl/worker-uploads
dpl/worker-uploads

dpl/worker-index
dpl/worker-index

dpl/worker-defaultdpl/web

dpl/nginx

dpl/web

kc

(our) generic way for building and deploying
applications on kubernetes

kc build

● Dockerfile or build script in repository
● build image in separate build pods
● automatic builds triggered by master changes
● build caching via dedicated build nodes
● support for all container registries (Google, ECR, etc.)

kc deploy

● allow updating multiple deployments at once
● wait for deployments to finish
● hooks
● multistage:

○ kc prod deploy
○ kc staging deploy

Hooks

● configure in .kc file
● executed with new image with current ENV in separate

container
● pre-check with prompt
● abort on failure
● allow e.g. database migrations

Cronjobs

● triggered by jenkins (running in k8s cluster)
● kc run
● each job creates new container with current image and ENV
● jenkins task waits for jobs to finish (only one job at a time)

Staging

● running in the same cluster
● separate kc config
● separate ELBs (public and vpn), TCP only
● 2 x nginx ingress (public and vpn)
● TLS via kube-lego
● basic-auth proxy (because SEO)

Logging

● all important information in single nginx line
● rails App passes information via HTTP header
● fluented as DaemonSet on all nodes
● kinesis-Firehose → S3 → SQS → k8s → ES
● kibana

deployment/nginx

● versioned ConfigMap
● custom nginx image
● ngx_headers_more

Benefits

● no more config management (chef, puppet, etc.)
● fully transparent infrastructure
● better resource utilization, bigger instances
● new services deployed in minutes
● easy to scale cluster up and down
● hardly any lock-in to specific hosting infrastructure
● spend more time on development, less time on ops

What’s next?

● kops: advanced kubernetes cluster management on AWS
● extract first components from monolith via GRPC

Resources

● https://github.com/jetstack/kube-lego
● https://github.com/kubernetes/ingress/tree/master/contro

llers/nginx
● https://github.com/kubernetes/kops
● https://prometheus.io/
● http://www.fluentd.org/
● http://www.grpc.io/

https://github.com/jetstack/kube-lego
https://github.com/jetstack/kube-lego
https://github.com/kubernetes/ingress/tree/master/controllers/nginx
https://github.com/kubernetes/ingress/tree/master/controllers/nginx
https://github.com/kubernetes/ingress/tree/master/controllers/nginx
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://prometheus.io/
https://prometheus.io/
http://www.fluentd.org/
http://www.fluentd.org/
http://www.grpc.io/
http://www.grpc.io/

We are always looking for
talent!

@tobstarr
tobias@phraseapp.com
phraseapp.com

