Guild Prototype

Koichi Sasada

Cookpad Inc.

<kol@cookpad.com> cookpad

RubyKaigi 2016 talk

A proposal of
new concurrency model
for Ruby 3

heroku

Koichi Sasada
kol@heroku.com

RubyKaigi 2016 talk

“Guild”

New concurrency model for Ruby 3

1L,DR

«\We can run parallel programs with Guilds

e Current implementation is too preliminary
and so buggy (easy to halt)

— “Thread programming” is too hard
for human beings.

Today's talk

« Background of Guild
Demonstrations
« Guild specifications (ideas)

«Guild implementations (w/ future plan)
e Synchronizations
 Performance optimizations

Koichi Sasada

nttp://atdot.net/~kol/

* A programmer
«20006-2012 Faculty

«2012-2017 Heroku, Inc.

«2017- Cookpad Inc.

« Job: MRI development

« Core parts
« /M, Threads, GC, etc

cookpad

Recent achievements Tor Ruby 2.6

«Speedup Proc#call” --- x1.4 improvements
[Bug #10212].

«Speedup block.call” where block is
passed block parameter. [Feature #14330]

(x2.62). . \N\ ".“

Advertisement

Cookpad booth events

[Day 2]
15:20~15:50 Global Office Hours
[Day 3]
12:00~13:00 Q&A with @wyhaines
15:20~15:50 Ruby interpreter developme
live by @kol & @mame

Cookpad X RubyKaigi 2018: Day 2 Party

June 1st, 19:30 - 21:30 (opens 19:00)
) Free (Registration required)

Show up to this booth at 18:40 if you want to head with us!

cookpad

Sackground of
Guild

Motivation

Productivity (most important for Ruby)

* Thread programming is too difficult

- Making correct/safe concurrent programs easily

Performance by Parallel execution

- Making parallel programs

- Threads can make concurrent programs, but can’t run them
in parallel on MRI (CRuby)

« People want to utilize Multi/many CPU cores

RubyKaigi2016 Proposal

Guild: new concurrency abstraction for Ruby 3

* |[dea: DO NOT SHARE mutable objects between Guilds
— No data races, no race conditions

Replace Threads to Guilds

Guilds, Threads and Fibers

« Guild has at least one thread (and a thread has at
least one fiber)

e [hreads in different Guilds can run in parallel

Guild Guild

Thread Thread Thread

Fiber = Fiber
Fiber riper

Design “Shareable”™ and "non-snarable”

* Non-shareable objects
« (normal) Mutable objects (String, Array, --*)
« They are members of only one Guild

e Using only 1 Guild, it compatible with Ruby 2

Guild 1

NG
@ Can’t access

(read/write)

& Guild 2 -

\“ 4

Demonstrations

Demonstration (on 40 vCPUs)

«CPU 40 virtual CPUs (2 x 10 x 2)
ex 2 CPUs
e Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz

e x10 cores
e X2 hyper threading

Ubuntu 16.10
* Already EOL ®

Demonstration (on 40 vC

\Workload

PUs)

 Calculate fib(23) x 100 000 times
» Serial version: 100 000.times{ fib(23) }
e Guild version:

Bl

FibHub
Guild

—=

!

prbor

load balancing

worker

fib

We can change
of workers

https://gist.github.com/ko1/e5327126a77e078a0ffdf005013592ea

FIBHUB = make worker hub do |n|
[n, fib(n)]
end
library
def make worker hub n workers = WN, &worker proc

pp WN: n workers if SVERBOSE

Guild.new(n workers, worker proc) do |nw, wp|
gulilds = nw.times.map do # I\IIake Worker gL"IdS
Guild.new do
while data = Guild.receive
result = wp.call (data)
Guild.parent << [:ans, Guild.current, result]
end
end

end

requests = []

while true

cmd, sender guild, data = *Guild.receive

case cmd

when :req # Receive a request from master

if g = gquilds.por # Send a task
g << data # if an idle worker is available

else
requests << data

end

when :ans # Receive an answers from workers
Guild.parent << data # Send an answers to master

if req = requests.pop

Send a remaining task
to the worker if exists

sender guild << req
else

guilds << sender guild
end

end

You don’t need to write Ssuch common code
but we provide some kind of a framework

https://gist.github.com/ko1/e5327126a77e078a0ffdf005013592ea

fib(23) with # of Guilds on 40 vC

20
15
10
5
0

0

20 40 60 80
of Guilds

~Speedup ratio (compare with serial execution)

P Us

100

Demonstration (on 40 vCPUs)

\Workload

e Calculate fib(n) x 100 000 times (0 =n
« Serial version: 100 000.times{ fib(23) }
e Guild version: 40 Guilds

/ fih

HbHub ﬂE
Guild " —
fib
load balancing V\/orker

IM

30)

-xecution

time (sec) of fib(n) x 100 000

with 40 GL

15000

10000

Sec

5000

0

lds on 40 vCPUs

12,896.23 sec
=~ 3.5 hours

791.2541 sec

=~ 13 minutes
—V—Vﬂ—v—v—v—e—o—o—O——O——*—‘M
H 10 15 20 25 30 35
n for fib(n)
—~real (sec) real-serial (sec)

Order of fib(n) is “O(2”n)”

fib(n) with 40 Guilds on 40 vCPUs

18
17
16
15 fib(9): about 100 recursive calls
13

Slower Faster

Speedup ratio compare
with serial execution

OFRLPNWPAOITOY N0 W

0 H 10 15 20 2H 30 35
n for fib(n)

Demonstration (on 40 virtual CPU)
«\\Vorkload

e Calculate wordcount for files and find a file
which contains maximum number of words.

e on “ruby/test/**/*” files (1,108 files)

def word count file
r = File.read(file) .b.upcase.split (/¥W/) .unig.size
end

Demonstration (on 40 virtual CPU)

\Workload

e Calculate wordcount for files and find a file
which contains maximum number of words.

e on “ruby/test/**/*” files (1,108 files)

WCHub
Guild

—=

WC

traverse directories, load balancing
correct wc results,
and calculate maximum

/ W

prbor

WC

worker

We can change
of workers

Demonstration (on 40 virtual CPU)

10
=
= 6.136364
s © 5
L= (€]
S o
3 = 1.736429 1.652815 2.473468
: B
S o | -
Serial 1 Guold 2 Guild 40 Guilds

It is SLOW with multiple Guilds
because GC/object allocation require naive global locking
(current implementation limitation) and huge contentions.

Guilc
Specification

Guilds, Threads and Fibers

«Guild has at least one thread (and a thread
has at least one fiber)

Guild Guild
Thread Thread hread
Fiber = Fiber

Fiber river

Threads in different guilds
can run in PARALLE]

* Threads in different guilds can run in parallel

* Threads in a same guild can not run in parallel
because of GVL (or GGL: Giant Guild Lock)

GlTl Acquire GGL
Gl 2 Acquire GGL

G2:T3 m—)

Making Guilds

gl = Guild.new do
exprl
end
g2 = Guild.new do
expr2
end
Two new Guilds and Threads are created
exprl and expr2 can run in parallel

Inter-Guild communication

Share only “shareable” objects

Guild 1

normal Shareable

mutable objl
objl

Guild 2

Shareable
obj?

normal
mutable
obj?

Design “Shareable”™ and "non-snarable”

*You can enjoy usual mutating
programming without any thread-safe
concerns.

Because we can’'t share mutable objects
netween Guilds. They are “non-sharable”.

In other words, you can’t make thread-
unsafe (data-racy) programs with Guilds.

Design “Shareable” and “non-sharable”

*You need to use “Sharable” objects to share
objects between Guilds

«On concurrent programs, most of objects are
not shared (thread-local)
* Tons of local objects and a few sharing objects
*You only need to care about a few objects

SCee

Design “Shareable”™ and "non-snarable”

Non-shareable objects
 (normal) Mutable objects (String, Array, -*)
« They are member of only one Guild

e Using only 1 Guild, it compatible with Ruby 2

Guild 1

NGI!!
@ Can’t access

(read/write)

a Guild 2 -

Design “Shareable”™ and "non-snarable”

*Shareable objects

-+ (1

(2
(3
(4

)
) C
) S
)

Immutable objects (Numeric, Symbol, -
ass/Module objects

necial mutable objects

|solated Proc

)

Shareable objects
(1) Immutable objects

 Immutable objects can be shared with any guilds
« Because no mutable operations for them

e “Immuta
* a9l =
oa2 —

0

L — 7

-7

e

"= "Frozen”

2, 3].freeze:al is Immutable

Object.new,

3]1.freeze: a2 is not Immutable

 Maybe we will introduce deep freeze feature

 Numeric objects, symbols, true, false, nil are immutable
(from Ruby 2.0, 2.1, 2.2)

» Frozen string objects are immutable (if they don’t have
instance variables)

Shareable objects
(2) Class/Module objects

« All objects (including any sharable objects) point
to own classes

» Good: Sharing class/module objects makes program
easier

« Bad: They can point to other mutable objects with
Constants, @@class variable and @instance variables

class C
Const = [1, 2, 3] # Const points a mutable
array
end
We will introduce special protocol for them

Shareable objects
(3) Special mutable objects

e Introduce shared/concurrent data structure
« Shared hash, array, ---
 Software transactional memory (from Clojure, --+), -+
« Guild objects and so on

* [hey require special process to force
synchronization explicitly

* They can't mutate without synchronizations.
e Easy to make correct concurrent programs

« Compared with normal Array, Hash, -+ they should
require special synchronization protocol to access

Shareable objects
(4) Isolated Proc

 Normal Proc can point to mutable objects with
outer local variable (free-variables)

* a = []; Proc.new{p at}.call

e Introduce Isolated Proc (made by
Proc#isolate) which is prohibited to access
outer variables

a = []; Proc.new{p a}.isolate.call
#=> RuntimeError (can’t access a)

e (there are more details but skip)

Shareable objects
(4) Isolated Proc

Initial block for Guild 1s i1solated
Proc

gl = Guild.new do

exprl # Make isolated block and invoke
end
g2 = Guild.new do

% ?1 #=> RuntimeFError (can’t access
N1

because block is isolated

end

Inter-Guild communication AP

« Actor model, send/recei

e Destination addresses a

Guild itself like
e Sending sharea

- (1) COPY
» (2) MOVE

“rlang/E

ve semantics
‘e represented by

IXIr Processes

ole objects means sending
only references to the objects (lightweight)

 Two methods to send non-shareable objects

Sending objects between Guilds

gl = Guild.new do # create Isolated Proc
n = Guild.receive
r = fib(n)
Guild.parent << r

end

gl << 30

p Guild.receive #=> 1346269

Sending shareable objects

g2 << o0l ol =Guild.receive

03

02:Data 03:Data

Sending non-shareable objects
(1) Send by Copy

g2 << ol 0l = Guild.receive

02 02
03 03

02:Data 02:Data

~__ O3:Data O3:Data

Sending non-shareable objects
(2) Send by Move

g2.move(ol) 0l =Guild.receive

02

03

02:Data

Sending non-shareable objects
(?) Send by Move

g2.move(ol) ol = Guild.receive

Guildl GuildZ

From Guild1l perspective, 03:Data
sent objects are invalidated

02:Data

Sending non-shareable objects
(?) Send by Move

|f we don’t access sent objects after
sending them (and there are many such
cases), we can send them faster

Examples
 Huge string data
«|/O operation (send request I/0 to workers)

Summary of object sharing/non-sharing

« Shareable objects
« Several types of shareable objects
« We can share them between Guilds
 They requires special synchronization protocol to mutate them

 Non-sharable objects
« Normal mutable objects (like String, Array, *+)

* Only one Guild can access such objects == membership
 We can send them by COPY or MOVE

* Mutable objects are NOT shared accidentally as Thread
programming — Correct concurrent Prog.

Guild
‘mplementation

Guild context

«Before Guild
/M -> *Threads -> *Fibers

e After Guild
/M -> *Guilds -> *Threads -> *Fibers
* Introduce rb guild t.

Introduce synchronizations

Before Guild

« Multiple threads cannot run simultaneously

e After Guild

« Run (native) threads in parallel

*Need to introduce so many synchronizations
e Introduce VM-wide locks for VIM-wide resources
e[t is the multi-thread programming!!

Garbage collection

«Stop all Guilds (threads) at GC process

GC process

G1:T1 Pause) EEE—

G3:T3 s —

-uture work and optimizations

eFeatures
* Prohibit sharing non-sharable objects

*Introduce synchronizations to protect VM-
wide resources (process-global)

Introduce “sharable” object protocols

e Performance
« Reduce synchronizations
* Per Guild Garbage collection
 Introduce new “C API” to reduce TLS access

-uture optimizations

° KO i C h i S a S a d a et a | . A n Vol. 48 No. SIG 0(PRO 34) WERELLBXE: JOyS5I VY 2007
, n | | | |
| m p | e m e ntati O n Of Pa ra | |e| Ruby iR~V YARV IZBIF A ETAL v FDFELE

gEH #H— T W XK 7 AR
Threads for YARV: Yet Another ME KR w %

ERXTIEAY ') 7+EE Ruby BRET > > YARV: Yet Another RubyVM 12617 dUHE

R u b yV I\/I 2 O O 7 ALY I:’i&i;!gt!'m;zt:*u.\rz'\'b I{|xl.\ixx%mﬁt\f‘fém%??i?’f%iﬁﬁ.énru

57075 LEETHE. Ruby DRBOVEDIZILFAL Y FFOT52 U FERBLTNGE

WHIRNBHIN, REECHBIATLD Ruby BEREZBEREEHILH, TT2—FL AL
TALY FHBER-TVS. LAL. COALY FRBFETR, ATy /7LTLES AR

[) T h ey | n tro d u Ce d S eve ra | HCEBLALTERTERL, BHHEBISOTERAL v FOBNEFI & DEMEALAT
FRVWEENMENHD. TLT, RERELHRREFPO Ruby BER YARV IZEVT, 0S$3
ATFVBEIZE>TRRAZADIFMNTATAL Y FEFATIAL Y FAERREREL, BBA
Ly FORMRFTERRLE. BHECH-->TR, BVLCRABOENSDRTHIH, FI-HHR

optimization techniques to reduce
synchronizations

DPLTOREERR, ALy FOENRFTICEI>TRLOALERALIIDVTHELLEBRERRD.

An Implementation of Parallel Threads for YARV: Yet Another RubyVM

KoIlcHI SASADA ., YUKIHIRO MATSUMOTO ,"* ATSUSHI MAEDA 1
and MITARO NAMIKI

In this paper, we describe an implementation of parallel threads for YARV: Yet Another
RubyVM. The Ruby language is used worldwide because of its ease of use. Ruby also sup-
ports multi-threaded programming. The current Ruby interpreter controls all threads only in
user-level to achieve high portability. However, this user-level implementation can not sup-
port blocking task and can not improve performance on parallel computers. To solve these
problems, we implement parallel threads using native threads provided by systems software
on YARV: Yet Another RubyVM what we are developing as another Ruby interpreter. To
achieve parallel execution, correct synchronizations are needed. Especially, C extension li-
braries for Ruby which are implemented without consideration about parallel execution need
a particular scheme for running in parallel. And we also try to reduce a number of times
of synchronization. In this paper, we show implementations of these schemes and results of
performance improvement on parallel threads execution

One more thing:--

Naming ot “"Guild”

Why “Guild™?

e Prefix should be different from “P”
(Process), “T" (Therad) and “F” (Fiber).

Ownership can be explained with the word
“Membership”.
« All (normal) objects belong to one Guild.
e Easy to explain “Move” semantics

Any problem?

* “Move” operation is not so popular operation
(most of case “copy” is enough)

* No other l[anguages use this terminology
 Naming is important

e Just now “Guild” is a code name of this
project

Today's talk

« Background of Guild
Demonstrations
« Guild specifications (ideas)

«Guild implementations (w/ future plan)
e Synchronizations
 Performance optimizations

Thank you for your attention

Guild Prototype

Koichi Sasada

Cookpad Inc.

<kol@cookpad.com> cookpad

2ros./Cons. Matrix
_ Process Guild Thread Auto-Fiber

Available Yes No Yes No Yes
Switch on Yes Yes Yes No No

time

Switch on I/O Auto Auto Auto Auto No
Next target Auto Auto Auto Auto Specify
Parallel run Yes Yes No (on MRI) No No
Shared data N/A (mostly) N/A Everything Everything Everything
Comm. Hard Maybe Easy Easy Easy Easy
Programming Hard Easy Difficult Easy Easy
difficulty

Debugging Easy? Maybe Easy Hard Maybe hard Easy

difficulty

