
JASON SWETT
Rails with Jason Podcast

host of the

THE
BEGINNER'S

GUIDE TO
RAILS

TESTING

2

The Beginner’s Guide to Rails Testing

Jason Swett

ii

Contents

Introduction v

1 What are the different kinds of Rails tests and when should I use
each? 1
1.1 The eight types of RSpec specs 1
1.2 Spec types I always use . 3

1.2.1 System specs . 3
1.2.2 Model specs . 4

1.3 Spec types I rarely use . 4
1.3.1 Request specs . 4
1.3.2 Helper specs . 5

1.4 Spec types I never use . 5
1.4.1 View specs and routing specs 5
1.4.2 Mailer specs and job specs 5

1.5 Takeaways . 5

2 What are all the Rails testing tools and how do I use them? 7
2.1 RSpec . 7
2.2 Factory Bot . 8

2.2.1 Fixtures . 8
2.2.2 Factories . 8
2.2.3 Relative merits of fixtures and factories 8

2.3 Capybara . 9
2.4 VCR and WebMock . 9

iii

iv CONTENTS

2.5 Takeaways . 9

3 Which test framework should I learn, RSpec or Minitest? 11
3.1 Fact #1: usually, someone else decides for you 11
3.2 Fact #2: usually, they’ve chosen RSpec 12
3.3 What does this mean? . 12
3.4 Also, it doesn’t matter much 13
3.5 So try both . 13
3.6 But if you just want me to pick for you, I say RSpec 14

4 How do I make testing a habitual part of my development work? 15
4.1 Laziness . 15

4.1.1 The alternative to automated tests 16
4.1.2 Mental energy . 16
4.1.3 Code understandability 17

4.2 Fear . 17
4.3 Pride . 18
4.4 Takeaways . 18

5 What level of test coverage should I shoot for? 19
5.1 Pains that tell you your test coverage might be insufficient . . 20

5.1.1 Too many bugs . 20
5.1.2 Too much manual testing 20
5.1.3 Infrequent deployments 20
5.1.4 Inability to refactor or make big changes 21
5.1.5 Poor code quality . 21
5.1.6 Diminished ability to hire and retain talent 21

5.2 The takeaway . 22

6 How do I set up a new Rails project for testing? 23
6.1 My application template . 23
6.2 The setup process . 24
6.3 The gems . 25

6.3.1 rspec-rails . 25

CONTENTS v

6.3.2 factory_bot_rails . 26
6.3.3 capybara . 26
6.3.4 webdrivers . 26
6.3.5 faker . 26
6.3.6 Honorable mention 27

6.4 Next steps . 27

7 How do I add tests to an existing Rails project? 29
7.1 If you have little testing experience 29
7.2 If you’re already comfortable with testing 30

7.2.1 Develop a shared vision 30
7.2.2 Start with what’s easiest 30
7.2.3 Expand . 31

7.3 The mechanical details . 31

8 Should I be doing test-driven development? 33
8.1 Testing != TDD . 33
8.2 Learning vs. incorporating 34
8.3 TDD is beneficial but optional 34
8.4 I don’t always practice TDD 34
8.5 Takeaways . 35

vi CONTENTS

Introduction
Welcome to The Beginner’s Guide to Rails Testing! The purpose of this guide
is to answer your biggest testing questions and help you get properly oriented
as you begin your journey toward competent Ruby on Rails testing.

The questions answered in this book are questions I’ve encountered over
roughly three years of teaching Rails testing. As I’ve written blog posts, inter-
acted on forums, participated in chat rooms, and had email exchanges, I’ve had
the opportunity to hear from dozens if not hundreds of Rails developers trying
to learn testing. The same questions tend to come up over and over, which are
the eight questions I’ve included in this guide.

I hope this guide helps you. If you read it and still have unanswered ques-
tions, please email me at jason@codewithjason.com and I’ll do my best to help
you.

Good luck and thanks for reading.

vii

mailto:jason@codewithjason.com

viii INTRODUCTION

Chapter 1

What are the different kinds
of Rails tests and when
should I use each?
When starting out with Rails testing, it’s hard to know where to start.

First, there’s the decision of which framework to use. Then, if you’ve cho-
sen RSpec (which most people do), you’re presented with a bewildering set of
possible test types to use.

In this chapter I’ll show you what types of tests there are. I’ll show you
which ones you should use and which ones you can ignore. Since most com-
mercial Rails projects use RSpec, I’m going to focus on the eight types of tests
that the RSpec library offers. (Although if I were to use Minitest, my strategy
regarding test types would be pretty much the same.)

1.1 The eight types of RSpec specs
The RSpec library offers a lot of different spec types.

• Model specs

• System specs/feature specs*

1

https://www.codewithjason.com/test-framework-learn-rspec-minitest/

2CHAPTER1. WHATARETHEDIFFERENTKINDSOFRAILS TESTSANDWHENSHOULD IUSEEACH?

• Request specs/controller specs*

• Helper specs

• View specs

• Routing specs

• Mailer specs

• Job specs

There are two lines with asterisks. These are cases where the RSpec team
decreed one spec type obsolete and replaced it with a new type. I’m only in-
cluding those ones for completeness.

So the up-to-date list is really the following.

• Model specs

• System specs

• Request specs

• Helper specs

• View specs

• Routing specs

• Mailer specs

• Job specs

Here’s when I use each.

• Model specs - always

• System specs - always

1.2. SPEC TYPES I ALWAYS USE 3

• Request specs - rarely

• Helper specs - rarely

• View specs - never

• Routing specs - never

• Mailer specs - never

• Job specs - never

Let’s talk about each of these spec types in detail. I’ll explain why I use the
ones I use and why I ignore the ones I ignore.

1.2 Spec types I always use
Believe it or not, the overwhelming majority of the Rails tests I write make use
of just two of the eight different spec types offered by RSpec. You might think
that this would leave large gaps in my test coverage but it doesn’t. My test
coverage is consistently above 95%.

1.2.1 System specs
System specs are “high-level” tests that simulate a user’s keystrokes and mouse
clicks. System specs literally open up a browser window (although perhaps an
invisible browser window if the tests are run “headlessly”) and use certain tools
to manipulate the browser to exercise your application through simulated user
input.

The reason I find system specs so valuable is that they test my whole stack,
not just a slice of it, and they test my application in the same exact way that a
real user will be using it. System specs are the only type of test that give me
confidence my whole application really works.

I write so many system specs that I’ve developed a repeatable formula for
adding system specs to any new CRUD feature.

https://www.codewithjason.com/test-coverage/
https://www.codewithjason.com/repeatable-step-step-process-writing-rails-integration-tests-capybara/

4CHAPTER1. WHATARETHEDIFFERENTKINDSOFRAILS TESTSANDWHENSHOULD IUSEEACH?

1.2.2 Model specs

Even though system specs are indispensable, they’re not without drawbacks.
System specs are somewhat “heavy”. They’re often more work to write and
more expensive to run than other types of tests. For this reason I like to cover
my features with a small number of coarse-grained system specs and a compar-
atively large number of fine-grained model specs.

As the name implies, model specs are for testing models. I tend to only
bring model specs into the picture once a model has reached a certain level
of “maturity”. At the beginning of a model’s life, it might have all its needs
covered by built-in Rails functionality and not need any methods of its own.
Some people write tests for things like associations and validations but I don’t
because I find those types of tests to be pointless.

I use model specs to test my models’ methods. When I do so, I tend to use
a test-first approach and write a failing test before I add a new line of code so
that I’m sure every bit of code in my model is covered by a test.

1.3 Spec types I rarely use

1.3.1 Request specs

Request specs are more or less a way to test controller actions in isolation. I tend
not to use request specs much because in most cases they would be redundant
to my system specs. If I have system specs covering all my features, then of
course a broken controller would fail one or more of my tests, making tests
specifically for my controllers unnecessary.

I also try to keep my controllers sufficiently simple as to not call for tests
of their own.

There are just three scenarios in which I do use request specs. First: If
I’m working on a legacy project with fat controllers, sometimes I’ll use request
specs to help me harness and refactor all that controller code. Second: If I’m
working on an API-only Rails app, then system specs are physically impossible
and I drop down to request specs instead. Lastly, if it’s just too awkward or

https://www.codewithjason.com/examples-pointless-rspec-tests/
https://www.codewithjason.com/use-controller-request-specs-rails-dont/

1.4. SPEC TYPES I NEVER USE 5

expensive to use a system spec in a certain case then I’ll use a request spec
instead. I write more about my reasoning here.

1.3.2 Helper specs
The reason I rarely write helper specs is simple: I rarely write helpers.

1.4 Spec types I never use

1.4.1 View specs and routing specs
I find view specs and routing specs to be redundant to system specs. If some-
thing is wrong with one of my views or routes, it’s highly likely that one of my
system specs will catch the problem.

1.4.2 Mailer specs and job specs
I don’t write mailer specs or job specs because I try very hard to make all my
mailers and background jobs one-liners (or close). I don’t think mailers and
background jobs should do things, I think they should only call things. This is
because mailers and background jobs are mechanical devices, not code organi-
zation devices.

To test mymailers and background jobs, I put their code into a POROmodel
and write tests for that PORO.

1.5 Takeaways
RSpec offers a lot of different spec types but you can typically meet 98% of
your needs with just system specs and model specs.

If you’re a total beginner, I’d suggest starting with system specs.

https://www.codewithjason.com/use-controller-request-specs-rails-dont/
https://www.codewithjason.com/code-smell-long-procedural-background-jobs-fix/
https://www.codewithjason.com/extracting-tidy-poro-messy-active-record-model/
https://www.codewithjason.com/repeatable-step-step-process-writing-rails-integration-tests-capybara/

6CHAPTER1. WHATARETHEDIFFERENTKINDSOFRAILS TESTSANDWHENSHOULD IUSEEACH?

Chapter 2

What are all the Rails testing
tools and how do I use them?
One of the most common questions for Rails developers new to testing is “What
are all the Rails testing tools and how do I use them?”

I’ll explain what the major tools are but I want to preface it by saying that
the most important thing to learn to be a successful tester is testing principles,
not testing tools. If you think of testing like a taco, the tools are the tortilla and
the principles are the stuff inside the taco. The tortilla is essential but it’s really
only a vehicle.

The following are the tools I use for my testing.

2.1 RSpec
RSpec is a test framework. A test framework is what gives us a structure for
writing our tests as well as the ability to run our tests.

There are other test frameworks but RSpec is the most popular one for com-
mercial Rails projects. The second most popular test framework is Minitest.

Test frameworks differ syntactically but the testing principles and practices
are going to be pretty much the same no matter what framework you’re using.
(If you’re not sure whether you should learn RSpec or Minitest, I write about
that here.)

7

https://www.codewithjason.com/test-framework-learn-rspec-minitest/

8CHAPTER2. WHATAREALLTHERAILS TESTINGTOOLSANDHOWDO IUSETHEM?

2.2 Factory Bot
One of the challenges of Rails testing is generating test data. For example, if
you’re writing a test that logs a user in and then takes some action, you’re going
to have to create a user in the database at the beginning of the test. Many tests
require much more complicated test data setup.

There are two common ways of generating test data in Rails tests: fixtures
and factories.

2.2.1 Fixtures
Fixtures typically take the form of one or more YAML files with some hard-
coded data. The data is translated into database records one time, before any of
the tests are run, and then deleted afterward. (This happens in a separate test
database instance of course.)

2.2.2 Factories
With factories, database data is generated specifically for each test. Instead
of loading all the data once at the beginning and deleting it at the end, data is
inserted before each test case and then deleted before the next test case starts.
(More precisely, the data isn’t deleted, but rather the test is run inside a database
transaction and the data is never committed in the first place, but that’s a me-
chanical detail that’s not important right now.)

2.2.3 Relative merits of fixtures and factories
I tend to prefer factories because I like having my data generation right inside
my test, close to where the test is happening. With fixtures the data setup is too
distant from where the test happens.

In my experience, for whatever reason, most people who use RSpec use
factories and most people who use Minitest use fixtures. If you’d like to learn
more about factories and fixtures, I write more about it here.

https://www.codewithjason.com/factories-fixtures-rails/

2.3. CAPYBARA 9

2.3 Capybara
Some Rails tests only exercise Ruby code. Other tests actually open up a
browser and simulate user clicks and keystrokes.

Simulating user input this way requires us to use some sort of tool to ma-
nipulate the browser. Capybara is a library that uses Ruby to wrap a driver
(usually the Selenium driver), letting us simulate clicks and keystrokes using
convenient Ruby methods.

For more examples of how to use Capybara, go here.

2.4 VCR and WebMock
One principle of testing is that tests should be deterministic, meaning they run
the same way every time no matter what.

When an application’s behavior depends on external services (e.g. a third-
party API like Stripe) it makes it harder to have deterministic tests. The tests
can be made to fail by an internet connection failure or a temporary outage of
the external service.

Tools like VCR and WebMock can help smooth out these challenges. VCR
can let us run our tests against the real external service, but capture all the ser-
vice’s responses in local files so that subsequent test runs don’t talk to the ex-
ternal service but rather just go off of the saved responses. That way, even if
the internet connection fails or the service goes down, the tests still work.

WebMock is a tool that serves a similar purpose, although I usually use it
in a more limited way. I don’t consider my test suite to be deterministic unless
it doesn’t talk to the network at all, so I use WebMock to enforce that my test
suite isn’t making any network requests.

2.5 Takeaways
Rails testing tools take some time to learn, but the important part (and perhaps
more difficult part) is learning testing principles.

https://www.selenium.dev/
https://www.codewithjason.com/repeatable-step-step-process-writing-rails-integration-tests-capybara/

10CHAPTER2. WHATAREALLTHERAILS TESTINGTOOLSANDHOWDO IUSETHEM?

If you’re just getting started with Rails testing, the next step I would suggest
is to learn about the different types of Rails tests and when to use them.

https://www.codewithjason.com/different-kinds-rails-tests-use/

Chapter 3

Which test framework should
I learn, RSpec or Minitest?

A common Rails testing question is which testing framework to use. RSpec and
Minitest are the two that most people are deciding between. To many beginners
it’s not clear which is the better choice.

We could weigh the technical pros and cons of each framework. Many
people find things to love and hate about both RSpec and Minitest. You can
find some passionate flame wars online if you look.

But before we get into all that, there are some realities to consider that over-
shadow the relative technical merits of the two frameworks. There are two par-
ticular facts we should think about.

3.1 Fact #1: usually, someone else decides for you

Most of us don’t have much choice as to whether to use RSpec or Minitest at
work.

At some point we’ll get a job. At that job they’ll either use RSpec there or
Minitest (or something else or nothing at all). Whatever they use at work, that’s
what we’ll be using. Our personal preferences are moot.

11

12CHAPTER3. WHICHTESTFRAMEWORKSHOULD I LEARN, RSPECORMINITEST?

3.2 Fact #2: usually, they’ve chosen RSpec
For better or worse, it’s my experience and the experience of most Rails devel-
opers I’ve talked with that most commercial projects use RSpec. (Note how I
said most commerical projects. Most commercial projects use RSpec and most
OSS Ruby projects, in my experience, use Minitest. I do not know why this is
the way it is.)

Out of curiosity I did a (totally unscientific) poll regarding which test frame-
work they use at work. Take it with a grain of salt, but here are the results.

Even if my numbers are off by quite a bit, RSpec is still the more popular
framework.

3.3 What does this mean?
My take is that this means if your goal is to get a Rails job, learning RSpec over
Minitest will give you a higher probability that your skills match the tech stack
that’s used at any particular company.

Some people may object to this way of looking at it. They might argue that
if you always you go with whatever’s most popular instead of what’s the best
technical choice, you may end up using a Windows laptop or switching from
Rails to Node.js.

3.4. ALSO, IT DOESN’T MATTER MUCH 13

This argument is flawed though. We’re free to make our own choices on
the big things but we can’t dictate what comes along with those choices. We
can choose to use Rails instead of a different framework, but we can’t reason-
ably say that we’re only going to work on Rails projects that use, for example,
Minitest and MySQL and Angular and no other combination of technologies.
We have to compromise a little or face extremely limited job options.

3.4 Also, it doesn’t matter much
Having said all that, I actually don’t believe your choice of which test frame-
work to learn matters!

RSpec and Minitest differ syntactically but they don’t really have meaning-
ful conceptual differences. The principles of testing are the same regardless of
which test framework you’re using, or even which language you’re using for
that matter.

You’re very unlikely to become an expert in Minitest and then get turned
down for a job because they use RSpec there, or vice versa. Employers typically
realize that if someone is skilled with testing, they’ll be able to pick up any test
framework relatively easily.

3.5 So try both
In a sense it might sound depressing that the answer to the RSpec/Minitest ques-
tion is a) we don’t have a choice and b) it doesn’t matter anyway. I actually find
these facts freeing.

If the choice between RSpec and Minitest doesn’t matter that much then
we’re free to evaluate both according to our own independent judgment and
taste and not worry about whether we’re making the “right” choice. Whatever
we choose, we’re likely to develop skills that will apply to any job, whether
they use Minitest or RSpec there.

So my advice is to try both frameworks and see which one you like better.
Neither one is objectively superior to the other.

14CHAPTER3. WHICHTESTFRAMEWORKSHOULD I LEARN, RSPECORMINITEST?

3.6 But if you just want me to pick for you, I say
RSpec

My very simplistic logic is that RSpec is what you’ll most likely be forced to
use at work, so that’s what you might as well learn.

But again, I encourage you to try both and decide for yourself. This is
ultimately not a very important decision. Learning testing principles is much
more important than learning testing frameworks.

Chapter 4

How do I make testing a
habitual part of my
development work?
One of the most common questions asked by Rails developers new to testing
is: how do I make testing a habitual part of my development work?

It’s one thing to know how to write tests. It’s another thing to actually write
tests consistently as a normal part of your work.

In order to share with you how to make testing a habitual part of your devel-
opment work, I conducted a poll among some of my peers in the Rails world to
see what keeps them in the habit of writing tests consistently. I also examined
my own motivations.

When I drew the commonalities among the answers, what I came up with
was a trifecta not unlike Larry Wall’s three virtues of a great programmer. The
trifecta is laziness, fear, and pride. Let’s examine each “virtue” individually.

4.1 Laziness
It might sound funny to name laziness as the first motivation for writing tests ha-
bitually. After all, tests seem like extra work. Writing tests consistently seems

15

http://threevirtues.com/

16CHAPTER4. HOWDO IMAKETESTINGAHABITUALPARTOFMYDEVELOPMENTWORK?

like something that would require discipline. But for me andmany of the people
who responded to my poll, it’s quite the opposite.

4.1.1 The alternative to automated tests

The alternative to writing tests isn’t just doing nothing. The alternative to writ-
ing tests is to perform manual testing, to let your users test your application for
you in production, or most likely, a combination of the two. The alternative to
writing tests is to suffer great pain and toil.

The laziness factor also extends beyond QA. I personally find that the pro-
cess of writing features is often easier and more pleasant when I’m writing with
the assistance of tests than when I’m not.

4.1.2 Mental energy

Mental energy is a finite, precious resource that (for me at least) starts full in
the morning and depletes throughout the day. When I’m working I don’t ever
want to use more than the minimum amount of mental exertion necessary to
complete a task.

If I write a feature without using tests, I’m often juggling the “deciding
what to do” work and the “actually doing it” work at the same time, which
has a cognitive cost more than twice as much as performing those two jobs
separately in serial. When I build a feature with the aid of tests, the tests allow
me to separate the “deciding what to do” work from the “actually doing it”
work.

It works like this. First I capture what to do in the form of a test. Then I
follow my own instructions by getting the test to pass. Then I repeat. This is
a much lighter cognitive burden than if I were to juggle these different mental
jobs and allows me to be productive for longer because I don’t run out of mental
energy as early in the day.

4.2. FEAR 17

4.1.3 Code understandability

It’s more difficult, time-consuming and unpleasant to work with messy code
than to work with clear and tidy code.

Being a lazy person, difficult, time-consuming and unpleasant work is ex-
actly what I don’t want to do. I want to do work that’s pleasant, quick and easy.

Unfortunately it’s not possible to have clean, understandable code without
having automated tests. This might sound like a hyperbolic claim but it’s not.
I can prove it based on a chain of truths.

The first truth is that it’s impossible to write a piece of code cleanly on the
first try. Some amount of refactoring, typically a lot of refactoring, is necessary
in order to get the code into a reasonably good state. This is true on a feature-
by-feature basis but it’s especially true on the scale of a whole project codebase.

The second truth is that it’s impossible to do non-trivial refactorings without
having automated tests. The feedback cycle is just too long when all the testing
is done manually. Either that or the risk of refactoring without testing afterward
is just too large to be justified.

So, if it’s impossible to have good code without refactoring, and it’s im-
possible to do refactoring without tests, then it’s impossible to have good code
without tests.

My extreme personal laziness demands that I only write neat and under-
standable code. Therefore, I have to write tests in order to satisfy my laziness.

4.2 Fear

Fear is another powerful impetus for testing. If I don’t write tests for my fea-
tures, it increases the risk that I release a bug to production. Bugs cause me
shame and embarrassment. I don’t want to feel embarrassment or shame.

Bugs may also have negative business consequences to the company I work
for. This could negatively affect the company’s ability or willingness to pay me
as much as I want.

When laziness doesn’t drive me to write tests, fear often does.

18CHAPTER4. HOWDO IMAKETESTINGAHABITUALPARTOFMYDEVELOPMENTWORK?

4.3 Pride
Lastly there’s pride. (I find Larry Wall’s “hubris” a little too strong a word.)

Sometimes, when I’m tempted not to write a test for a feature, I imagine
another developer stumbling across my work in the future and seeing that there
are no tests. I imaginemyself sheepishly admitting to that developer that I didn’t
bother to write tests for that feature. Why didn’t I write tests? No good reason.

As the arrogant person that I am, this imaginary interaction brings me pain.
I really don’t like the idea that somebody else would like at my work and make
a (legitimate) negative judgment.

I also want my work to be exemplary. If we hire a junior developer where
I work, I want to be able to point to my code and say “This is how we do it.” I
don’t know how I would explain that my test coverage is poor but I want theirs
to be good.

4.4 Takeaways
I’m not driven to write tests out of discipline. I also don’t consider testing to be
“extra” effort but rather an effort-saver.

The main forces that drive me to write tests are laziness, fear and pride.
Mostly laziness.

https://www.youtube.com/watch?v=0hiUuL5uTKc

Chapter 5

What level of test coverage
should I shoot for?

“What level of test coverage should I shoot for?” is one of the questions most
commonly asked by beginners to Rails testing.

My answer is that you shouldn’t shoot for a particular level of test coverage.
I recommend that instead you make testing a habitual part of your development
workflow. A healthy level of test coverage will flow from there.

I also want to address why people ask this question. I think people ask this
because they want some way of knowing whether they’re testing “enough” or
doing testing “right”. Test coverage is one way of measuring this but I think
there are better, more meaningful ways.

I think that if you’re feeling the kinds of pains that missing tests leave in
their absence, then you need more tests. If you’re not feeling those kinds of
pains, then you’re good.

19

https://www.codewithjason.com/make-testing-habit/
https://www.codewithjason.com/make-testing-habit/

20CHAPTER5. WHATLEVELOFTESTCOVERAGESHOULD I SHOOTFOR?

5.1 Pains that tell you your test coverage might be
insufficient

5.1.1 Too many bugs
This is the obvious one. All software has bugs, but if you feel like the rate of
new bugs appearing in production is unacceptably high, it may be a symptom
of too little test coverage.

5.1.2 Too much manual testing
This is another fairly obvious one. The only alternative to using automated
tests, aside from not testing at all, is to test manually.

Some level of manual testing is completely appropriate. Automated tests
can never replace, for example, exploratory testing done by a human. But hu-
mans should only carry out the testing that can’t be done better by a computer.
Otherwise testing is much more expensive and time-consuming than it needs to
be.

5.1.3 Infrequent deployments
Infrequent deployments can arise as a symptom of too few tests for a couple
different reasons.

One possible reason is that the need for manual testing bottlenecks the de-
ployment timing. If it takes two days for manual testers to do a full regression
test on the application, you can of course only deploy a fully-tested version of
your application once every two days at maximum. (And this is assuming the
test suite passes every time, which is not typically the case.)

Another possible reason for infrequent deployments is the following logic:
things go wrong every time we deploy, therefore things will go wrong less often
if we deploy less often, so let’s deploy less often. Unfortunately this decision
means that problems pile up and get introduced to production all at once on
each deployment instead of getting sprinkled lightly over time.

5.1. PAINS THATTELLYOUYOURTESTCOVERAGEMIGHTBE INSUFFICIENT21

With the presence of a good test suite, deployments can happen many times
a day instead of just once every few weeks or months.

5.1.4 Inability to refactor or make big changes
When a particular change has a small footprint, manual testing is usually good
enough (although of course sometimes changes that seem like they’d have small
footprints cause surprising regressions in distant areas).

When a change has a large footprint, like a Rails version upgrade or a broad
refactoring, it’s basically impossible to gain sufficient confidence of the safety
of the change without having a solid automated test suite. So on codebases
without good test coverage, these types of improvements tend not to happen.

5.1.5 Poor code quality
As I’ve written elsewhere, it’s not possible to have clean, understandable code
without having tests.

The reason is that refactoring is required in order to have good code and
automated tests are required in order to do sufficient refactoring.

5.1.6 Diminished ability to hire and retain talent
Lastly, it can be hard to attract and retain high-quality developers if you lack
tests and you’re suffering from the ailments that result from having poor test
coverage.

If a job candidate asks detailed questions about your development practices
or the state of your codebase, he or she might develop a negative perception of
your organization relative to the other organizations where he or she is inter-
viewing. All other things being equal, a sophisticated and experienced engineer
is probablymore likely to pick some other organization that doeswrite tests over
yours which doesn’t.

Even if you manage to get good people on your team, you might have trou-
ble keeping them. It’s painful to live with all the consequences of not having
tests. Your smartest people are likely to be the most sensitive to these pains, and

https://www.codewithjason.com/make-testing-habit/

22CHAPTER5. WHATLEVELOFTESTCOVERAGESHOULD I SHOOTFOR?

they may well seek somewhere else to work where the development experience
is more pleasant.

5.2 The takeaway
I don’t think test coverage is a particularly meaningful way to tell whether
you’re testing enough. Instead, assess the degree to which you’re suffering
from the above symptoms of not having enough tests. Your degree of suffering
is probably proportionate to your need for more tests.

If you do this, then “good” coverage numbers are likely to follow. Last time
I checked my main codebase at work my test coverage level was 96.47%.

Chapter 6

How do I set up a new Rails
project for testing?
Below is how I set up a fresh Rails application for testing. I’ll describe it in
three parts:

1. An application template that can add all the necessary gems and config-
uration

2. My setup process (commands I run to create a new Rails app)

3. A breakdown of the gems I use

Let’s start with the application template.

6.1 My application template
First, if you don’t know, it’s possible to create a file called an application tem-
plate that you can use to create a Rails application with certain code or configu-
ration included. This is useful if you create a lot of new Rails applications with
parts in common.

Here’s an application template I created that will do two things: 1) install
a handful of testing-related gems and 2) add a config file that will tell RSpec

23

https://guides.rubyonrails.org/rails_application_templates.html
https://guides.rubyonrails.org/rails_application_templates.html

24CHAPTER6. HOWDO I SETUPANEWRAILSPROJECTFORTESTING?

not to generate certain types of files. A more detailed explanation can be found
below the code.

Listing 6.1: Gemfile
gem_group :development, :test do

gem 'rspec-rails'

gem 'factory_bot_rails'

gem 'capybara'

gem 'webdrivers'

gem 'faker'

end

initializer 'generators.rb', <<-CODE

Rails.application.config.generators do |g|

g.test_framework :rspec,

fixtures: false,

view_specs: false,

helper_specs: false,

routing_specs: false,

request_specs: false,

controller_specs: false

end

CODE

The first chunk of code will add a certain set of gems to my Gemfile. A
more detailed explanation of these gems is below.

The second chunk of code creates a file at config/initializers/generators.rb.
The code in the file says “when a scaffold is generated, don’t generate files for
fixtures, view specs, helper specs, routing specs, request specs or controller
specs”. There are certain kinds of tests I tend not to write and I don’t want to
clutter up my codebase with a bunch of empty files. That’s not to say I never
write any of these types of tests, just sufficiently rarely that it makes more sense
for me to create files manually in those cases than for me to allow files to get
generated every single time I generate a scaffold.

6.2 The setup process
When I run rails new, I always use the -T flag for “skip test files” because
I always use RSpec instead of the Minitest that Rails comes with by default.

https://www.codewithjason.com/kinds-rails-tests-write-kinds-dont/

6.3. THE GEMS 25

Also, incidentally, I always use PostgreSQL. This choice of course has little
to do with testing but I’m including it for completeness.

In this particular case I’m also using the -m flag so I can pass in my appli-
cation template. Application templates can be specified using either a local file
path or a URL. In this case I’m using a URL so that you can just copy and paste
my full rails new command as-is if you want to.

$ rails new my_project -T -d postgresql \

-m https://raw.githubusercontent.com/jasonswett/testing_application_template/master/application_template.rb

Once I’ve created my project, I add it to version control. (I could have
configured my application template to do this step manually, but I wanted to
explicitly show it as a separate step, partially to keep the application template
clean and easily understandable.)

$ git add .

$ git commit -a -m'Initial commit'

Lastly, I run rails g rspec:install. Even though I’ve already added
theRSpec gemviamy application template, I need to runrails g rspec:install

in order to add some RSpec-related configuration files to my project.

$ rails g rspec:install

6.3 The gems
Here’s an explanation of each gem I chose to add to my project.

6.3.1 rspec-rails
RSpec is one of the two most popular test frameworks for Rails, the other being
Minitest.

The rspec-rails gem is the version of the RSpec gem that’s specifically
fitted to Rails.

https://github.com/seattlerb/minitest
https://github.com/rspec/rspec

26CHAPTER6. HOWDO I SETUPANEWRAILSPROJECTFORTESTING?

6.3.2 factory_bot_rails
Factory Bot is a tool for generating test data. Most Rails projects that use RSpec
also use Factory Bot.

Like rspec-rails, factory_bot_rails is a Rails-specific version of
a more general gem, factory_bot.

6.3.3 capybara
Capybara is a tool for writing acceptance tests, i.e. tests that interact with the
browser and simulate clicks and keystrokes.

The underlying tool that allows us to simulate user input in the browser is
called Selenium. Capybara allows us to control Selenium using Ruby.

6.3.4 webdrivers
In order for Selenium to work with a browser, Selenium needs drivers. There
are drivers for Chrome, drivers for Edge, etc. Unfortunately it can be somewhat
tedious to keep the drivers up to date. The webdrivers gem helps with this.

6.3.5 faker
By default, Factory Bot (the tool for generating test data) will give us factories
that look something like this:

FactoryBot.define do

factory :customer do

first_name { "MyString" }

last_name { "MyString" }

email { "MyString" }

end

end

This is fine for just one record but becomes a problem if we have multiple
records plus a unique constraint. If in this example we require each customer to

https://github.com/thoughtbot/factory_bot
https://github.com/teamcapybara/capybara
https://www.selenium.dev/documentation/en/
https://github.com/titusfortner/webdrivers

6.4. NEXT STEPS 27

have a unique email address, then we’ll get a database error when we create two
customer records because the email address of MyString will be a duplicate.

One possible solution to this problem is to replace the instances of "MyString"
with something like SecureRandom.hex. I don’t like this, though, because I
often find it helpful if my test values resemble the kinds of values they’re stand-
ing in for. With Faker, I can do something like this:

FactoryBot.define do

factory :customer do

first_name { Faker::Name.first_name }

last_name { Faker::Name.last_name }

email { Faker::Internet.email }

end

end

This can make test problems easier to troubleshoot than when test values
are simply random strings like c1f83cef2d1f74f77b88c9740cfb3c1e.

6.3.6 Honorable mention
I also often end up adding the VCR and WebMock gems when I need to test
functionality that makes external network requests. But in general I don’t be-
lieve in adding code or libraries speculatively. I only add something once I’m
sure I need it. So I typically don’t include VCR or WebMock in a project from
the very beginning.

6.4 Next steps
After I initialize my Rails app, I usually create a walking skeleton by deploying
my application to a production and staging environment and adding one small
feature, for example the ability to sign in. Building the sign-in feature will
prompt me to write my first tests. By working in this way I front-load all the
difficult and mysterious work of the project’s early life so that from that point
on, my development work is mostly just incremental.

https://github.com/vcr/vcr
https://github.com/bblimke/webmock
https://www.codewithjason.com/walking-skeleton-always-start-projects-one/

28CHAPTER6. HOWDO I SETUPANEWRAILSPROJECTFORTESTING?

If you’re brand new to Rails testing and would like to see an example of
how I would actually write a test once I have the above application set up, I
might recommend my Rails testing “hello world” post.

https://www.codewithjason.com/rails-testing-hello-world-using-rspec-capybara/

Chapter 7

How do I add tests to an
existing Rails project?
One of the most common questions asked by developers new to Rails testing is
“How do I add tests to an existing Rails project?”

The answer largely depends on your experience level with testing. Here are
my answers based on whether you have little testing experience or if you’re
already decently comfortable with testing.

7.1 If you have little testing experience
If you have little testing experience, I would suggest getting some practice on
a fresh Rails app before trying to introduce testing to the existing Rails project
you want to add tests to.

Adding tests to an existing project is a distinct skill from writing tests for
new projects. Adding tests to an existing project can be difficult even for very
experienced testers, for reasons described below.

At the same time, you probably don’t want to wait a year to learn testing
before you start enjoying the benefits of testing on your existing Rails app.
What I would suggest is to first start a fresh throwawayRails app for the purpose
of learning testing. Then, once you’ve gotten a little experience there, see if you
can apply something to your existing Rails app. Then, if things get too hard in

29

30CHAPTER 7. HOWDO IADDTESTS TOANEXISTINGRAILS PROJECT?

the existing app, switch back to the throwaway app so you can strengthen your
skills more. Continue switching back and forth until you don’t need to anymore.

7.2 If you’re already comfortable with testing
Here’s how I suggest adding tests to an existing Rails project: 1) develop a
shared vision with your team, 2) start with what’s easiest, then 3) expand your
test coverage.

7.2.1 Develop a shared vision
Going from no tests to decent test coverage is unfortunately not as simple as
just deciding one day that from now on we’re going to write tests.

The teammaintaining the codebase needs to decide certain things, like what
testing tools they’re going to use andwhat testing approach they’re going to use.

In other words, if the team wants to go from point A to point B, they have
to decide exactly where point B is and how they intend to try to get there.

7.2.2 Start with what’s easiest
When adding tests to a codebase that has few or no tests, it might seem logical
to start by adding tests where tests would be most valuable. Or it might seem
logical to require all new changes to have tests. Unfortunately, both these ideas
have problems.

The features in an application that are most valuable are also likely to be
among the most non-trivial. This means that tests for these features will prob-
ably be relatively hard to write due to the large amount of setup data needed.
Code written without testability in mind can also be difficult to test due to en-
tangled dependencies.

Requiring all new changes to have tests also has problems. New changes
aren’t usually independent of existing code. They’re usually quite tangled up.
This brings us back to the same problem we’d have adding tests to our most im-

https://www.codewithjason.com/rails-testing-tools/

7.3. THE MECHANICAL DETAILS 31

portant features: the setup and dependencies make adding tests difficult, some-
times prohibitively so.

What I would do instead is start with what’s easiest. I would look for the
simplest CRUD interfaces in the app and add some tests there, even if those
particular tests didn’t seem to add much value. The idea isn’t to add valuable
tests right from the start but to establish a beachhead that can be expanded upon.

7.2.3 Expand
Once you have a handful of tests for trivial features, you can add tests for in-
creasingly complicated features. This will give you amuch better shot at ending
up with good test coverage than trying to start with the most valuable features
or trying to add tests for all new changes.

7.3 The mechanical details
If your existingRails application doesn’t have any testing infrastructure, I would
suggest taking a look at my how I set up a Rails application post. (Remember
that it’s possible to apply an application template to an existing project.)

As you add tests to your project starting with the most trivial features, I
would suggest startingwith system specs as opposed tomodel specs or any other
type of specs. The reason is that system specs are often more straightforward
to conceive of and understand. If you’d like a formula you can apply to add
system specs to almost any CRUD feature, you can find that here.

Then, as you get deeper into adding tests to your application, I would sug-
gest two resources: Working Effectively with Legacy Code by Michael Feath-
ers and my post about using tests as a tool to wrangle legacy projects. You
might not consider your project a legacy project, but the techniques will be
useful anyway.

https://www.codewithjason.com/test-coverage/
https://www.codewithjason.com/set-rails-application-testing/
https://www.codewithjason.com/different-kinds-rails-tests-use/
https://www.codewithjason.com/repeatable-step-step-process-writing-rails-integration-tests-capybara/
https://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
https://www.codewithjason.com/using-tests-tool-wrangle-legacy-projects/

32CHAPTER 7. HOWDO IADDTESTS TOANEXISTINGRAILS PROJECT?

Chapter 8

Should I be doing test-driven
development?

When I see questions from beginners regarding learning testing, sometimes they
seem to conflate testing with test-driven development (TDD). People will say
“I have such-and-such question about TDD” but really it’s just a question about
testing, nothing to do with TDD specifically.

Other people sometimes ask questions about whether TDD is “better” than
writing tests after.

In this chatper I’ll try to clarify what’s TDD and what’s not. I’ll also explain
whether I think it makes sense for testing beginners to try to practice TDD.

8.1 Testing != TDD

First of all, at the risk of stating the obvious, testing and TDD aren’t the same
thing. TDD is a specific kind of testing practice where you write the tests before
you write the code that makes the test pass. (If you want to go deeper into TDD,
I highly recommend Kent Beck’s Test Driven Development: By Example.)

33

https://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530

34 CHAPTER 8. SHOULD I BE DOING TEST-DRIVEN DEVELOPMENT?

8.2 Learning vs. incorporating
Another mistake beginners sometimes make is to conflate learning testing with
incorporating testing as a habitual part of their development workflow. They
feel like they need to start adopting testing practices into their workflow from
day one, and if they fail to do that, then they’ve failed at learning testing.

I think it’s more productive to separate the jobs of learning testing and ap-
plying testing. It’s not like skiing, where you learn it and do it at the same time.
It’s more like basketball, where you practice free throws in your driveway and
build some skills that way before you try to play a real game in front of an au-
dience. You’ll get farther in the beginning if you separate the practice from the
application of what you’ve learned to production tests. When you get comfort-
able enough, you can take off the training wheels and get all your practice from
writing production tests.

8.3 TDD is beneficial but optional
TDD is super helpful in certain scenarios but it’s not something you absolutely
need to learn when you’re first learning testing. I think it’s completely appro-
priate to first learn the fundamentals of testing in general, and then start to learn
TDD once you’ve developed a decent level of comfort with testing.

8.4 I don’t always practice TDD
I’m not an advocate of practicing TDD 100% of the time in Rails, even for
experienced testers. The reason is that when I’m building a new feature, I often
have little idea what shape that feature will take, and the most realistic way for
me to hammer it into shape is to just start building it. Once I’ve built some of
the feature, then I’ll start adding tests. So, a portion of the time, I write my tests
after writing my application code. The place where I find TDD most useful is
for model code. I practice TDD in my models a high percentage of the time.
Once I’ve put the broad strokes of a feature in place, I’ll usually use TDD to
work out the fine-grained aspects of it.

https://www.codewithjason.com/make-testing-habit/

8.5. TAKEAWAYS 35

8.5 Takeaways
• Testing and test-driven development aren’t the same thing.

• When you’re first learning testing, it can be helpful to separate learning
testing from applying testing.

• You don’t need to learn TDD when you’re starting out.

• I don’t always practice TDD or even advocate practicing TDD 100% of
the time. I myself practice TDD maybe 60% of the time.

	Introduction
	What are the different kinds of Rails tests and when should I use each?
	The eight types of RSpec specs
	Spec types I always use
	System specs
	Model specs

	Spec types I rarely use
	Request specs
	Helper specs

	Spec types I never use
	View specs and routing specs
	Mailer specs and job specs

	Takeaways

	What are all the Rails testing tools and how do I use them?
	RSpec
	Factory Bot
	Fixtures
	Factories
	Relative merits of fixtures and factories

	Capybara
	VCR and WebMock
	Takeaways

	Which test framework should I learn, RSpec or Minitest?
	Fact #1: usually, someone else decides for you
	Fact #2: usually, they've chosen RSpec
	What does this mean?
	Also, it doesn't matter much
	So try both
	But if you just want me to pick for you, I say RSpec

	How do I make testing a habitual part of my development work?
	Laziness
	The alternative to automated tests
	Mental energy
	Code understandability

	Fear
	Pride
	Takeaways

	What level of test coverage should I shoot for?
	Pains that tell you your test coverage might be insufficient
	Too many bugs
	Too much manual testing
	Infrequent deployments
	Inability to refactor or make big changes
	Poor code quality
	Diminished ability to hire and retain talent

	The takeaway

	How do I set up a new Rails project for testing?
	My application template
	The setup process
	The gems
	rspec-rails
	factory_bot_rails
	capybara
	webdrivers
	faker
	Honorable mention

	Next steps

	How do I add tests to an existing Rails project?
	If you have little testing experience
	If you're already comfortable with testing
	Develop a shared vision
	Start with what's easiest
	Expand

	The mechanical details

	Should I be doing test-driven development?
	Testing != TDD
	Learning vs. incorporating
	TDD is beneficial but optional
	I don't always practice TDD
	Takeaways

